GRADO EN ING. EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CUARTO CURSO

GUÍA DE ESTUDIO PÚBLICA

SISTEMAS ELECTRÓNICOS AVANZADOS

CÓDIGO 68024070

19-20

SISTEMAS ELECTRÓNICOS AVANZADOS CÓDIGO 68024070

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA
EQUIPO DOCENTE
HORARIO DE ATENCIÓN AL ESTUDIANTE
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA

RECURSOS DE APOYO Y WEBGRAFÍA

UNED 2 CURSO 2019/20

Nombre de la asignatura SISTEMAS ELECTRÓNICOS AVANZADOS

 Código
 68024070

 Curso académico
 2019/2020

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LA INGENIERÍA

Título en que se imparte GRADO EN ING. EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA

Curso CUARTO CURSO Tipo OPTATIVAS

 Nº ETCS
 5

 Horas
 125.0

Periodo SEMESTRE 2 Idiomas en que se imparte CASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura "Sistemas Electrónicos Avanzados" introduce al alumno en la materia de los dispositivos lógicos programables, tanto los más orientados a trabajar bajo programas informáticos o los que se adecuan más a los procesos industriales, especialmente en su variante de diseño con FPGA.

Los objetivos que persigue la asignatura se centran en como se pueden realizar diseños digitales avanzados utilizando dispositivos programables FPGA. Se estudiarán la arquitectura así como las ventajas e inconvenientes que presenta, además se analizará en que casos hay que adoptar cada aproximación.

Esta asignatura, de carácter optativo, del segundo cuatrimestre, dentro del plan de estudios, es una de las más importantes para la adecuada formación de un Graduado en ingeniería Electrónica Industrial y Automática. Dado que como todo el mundo ya conoce los sistemas digitales en la actualidad prácticamente se basan en gran medida en las aplicaciones de estos dispositivos avanzados.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

Esta asignatura se apoya en los conocimientos y competencias adquiridos en la asignatura de tercer curso Arquitectura de Ordenadores, así como se supone que los alumnos ya disponen de los conocimientos básicos adquiridos en las asignaturas de electrónica cursadas a lo largo de la carrera.

Se considera también muy conveniente tener unos conocimientos básicos de VHDL e informática para el manejo de un ordenador personal a nivel de usuario.

UNED 3 CURSO 2019/20

EQUIPO DOCENTE

Nombre y Apellidos SERGIO MARTIN GUTIERREZ

Correo Electrónico smartin@ieec.uned.es

Teléfono 91398-7623

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Departamento ING.ELÉCT., ELECTRÓN., CONTROL, TELEMÁT.

Nombre y Apellidos MANUEL ALONSO CASTRO GIL

Correo Electrónico mcastro@ieec.uned.es

Teléfono 91398-6476

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Departamento ING.ELÉCT., ELECTRÓN., CONTROL, TELEMÁT.

Nombre y Apellidos CLARA MARIA PEREZ MOLINA

Correo Electrónico clarapm@ieec.uned.es

Teléfono 91398-7746

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Departamento ING.ELÉCT., ELECTRÓN., CONTROL, TELEMÁT.

Nombre y Apellidos ROSARIO GIL ORTEGO
Correo Electrónico rgil@ieec.uned.es
Teléfono 91398-7923

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Departamento ING.ELÉCT., ELECTRÓN., CONTROL, TELEMÁT.

HORARIO DE ATENCIÓN AL ESTUDIANTE

La enseñanza a distancia utilizada para el seguimiento de esta asignatura, que garantiza la ayuda al alumno, dispone de los siguientes recursos:

- Entorno Virtual. A través de CiberUNED el equipo docente de la asignatura pondrá a disposición de los alumnos diverso material de apoyo en el estudio, así como el enunciado del trabajo de prácticas. Dispone además de foros donde los alumnos podrán plantear sus dudas para que sean respondidas por los tutores o por el propio equipo docente. Es el SOPORTE FUNDAMENTAL de la asignatura, y supone la principal herramienta de comunicación entre el equipo docente, los tutores y los alumnos, así como de los alumnos entre sí.
- Correción de Pruebas de Evaluación a Distancia.
- Tutorías con el equipo docente: La guardia de la asignatura se realizará los martes por la tarde de 15:00 a 19:00 horas, en los locales del Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería en la Escuela Técnica Superior de Ingenieros Industriales de la UNED. Sergio Martín Gutiérrez, teléfono 913-987-623. Para cualquier consulta personal o entrevista se recomienda realizar citación previa en: smartin@ieec.uned.es. El resto del horario de estancia en la Universidad es el adecuado a la dedicación de cada profesor. Se recomienda al alumno la utilización del curso virtual creado al efecto como soporte de la asignatura, así como la asistencia periódica a las tutorías en su Centro Asociado.

UNED 4 CURSO 2019/20

TUTORIZACIÓN EN CENTROS ASOCIADOS

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

COMPETENCIAS DEL GRADO (ORDEN CIN 351-2009)

COMPETENCIAS GENERALES:

- •CG3. -Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- •CG4. -Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- •CG10. -Capacidad de trabajar en un entorno multilingüe y multidisciplinar. COMPETENCIAS ESPECÍFICAS:
- •Esta asignatura, por ser optativa, no tiene asignadas competencias específicas. OTRAS COMPETENCIAS:
- •Manejo de las tecnologías de la información y comunicación (TICs).
- •Capacidad para gestionar información.
- •Conocimiento aplicado los fundamentos científicos y tecnológicos de electrónica digital y microprocesadores.

(OBSERVACIONES: Memoria del Grado en proceso de revisión)

RESULTADOS DE APRENDIZAJE

El estudio de la asignatura permite al alumno conocer los fundamentos de sistemas electrónicos digitales tan utilizados en la actualidad como las FPGA, tanto a nivel de arquitectura como de programación.

Esta asignatura es una de las más importantes para la adecuada formación de un Graduado en Ingeniería en Electrónica Industrial y Automática. Dado que como todo el mundo ya conoce los sistemas digitales en la actualidad prácticamente se basan en gran medida en las aplicaciones de estos dispositivos avanzados.

Se pretende que al finalizar la asignatura el alumno conozca las características fundamentales del diseño digital con FPGAs, conociendo las características fundamentales de dichos circuitos.

UNED 5 CURSO 2019/20

CONTENIDOS

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LOS DISPOSITIVOS LÓGICOS PROGRAMABLES

TEMA I: Principios generales de los circuitos digitales configurables.

TEMA II: Dispositivos lógicos programables.

TEMA III: Diseño de sistemas digitales con FPGA.

UNIDAD DIDÁCTICA 2 -LENGUAJE DE DESCRIPCIÓN FORMAL VHDL

TEMA IV: Metodologías de diseño y aportaciones de los HDLS

TEMA V: Características Básicas de VHDL

TEMA VI: Características Avanzadas de VHDL

TEMA VII: Simulación

UNIDAD DIDÁCTICA 3 -DISEÑO DE APLICACIONES CON FPGA

Tema VIII. Introducción a la herramienta ISE de Xilinx.

Tema IX. Diseño de circuitos digitales mediante esquemáticos.

Tema X. Diseño de circuitos digitales mediante grafos de estados

Tema XI. Diseño de circuitos digitales mediante VHDL

UNED 6 CURSO 2019/20

Tema XII. Aplicaciones industriales.

METODOLOGÍA

La metodología de estudio utiliza la tecnología actual para la formación a distancia en aulas virtuales, con la participación del Equipo Docente, los Profesores Tutores y todos los alumnos matriculados. En este entorno se trabajaran los contenidos teóricoprácticos cuya herramienta fundamental de comunicación será el curso virtual, utilizando la bibliografía básica y el material complementario. Esta actividad del alumno en el aula virtual corresponde aproximadamente a un 10% del tiempo total asignado al estudio de la asignatura.

El trabajo autónomo de estudio, junto con las actividades de ejercicios y prácticas realizadas, bajo la supervisión del tutor, con las herramientas y directrices preparadas por el equipo docente, completará aproximadamente un 60% del tiempo de preparación de la asignatura.

Por último esta asignatura tiene además programadas unas prácticas. Esta actividad formativa representa aproximadamente el 30% del tiempo dedicado a la asignatura

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Examen de desarrollo

Preguntas desarrollo

Duración del examen 120 (minutos)

Material permitido en el examen

Ninguno

Criterios de evaluación

Cada pregunta tendrá el mismo valor. Se valorarán tanto los contenidos desarrollados como la forma de explicarlos.

% del examen sobre la nota final 60

Nota del examen para aprobar sin PEC 0

Nota máxima que aporta el examen a la

calificación final sin PEC

Nota mínima en el examen para sumar la 4

PEC

Comentarios y observaciones

UNED 7 CURSO 2019/20

Prueba Presencial

Realización de un examen teórico/práctico en el que se evaluarán todos los contenidos de la asignatura.

Se realizarán más indicaciones en el curso virtual durante el desarrollo de la asignatura.

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Si Descripción

Prácticas a Distancia

En la asignatura se realizarán varias prácticas a distancia consistentes en el desarrollo de programas VHDL para su ejecución en FPGA. Para estas tareas se utilizarán tanto un simulador como un laboratorio remoto real con una FPGA Xilinx Spartan 3EN.

Estos ejercicios tienen como objetivos:

Adquisición de destreza y rapidez en la resolución de las prácticas de la asignatura Aclaración y consolidación de los conocimientos adquiridos en el estudio aplicados al desarrollo de las prácticas

Comprobación del nivel de conocimientos

Características:

Ejercicio obligatorio.

Para la realización de las prácticas, el alumno deberá seguir los enunciados que encontrará en la sección de Tareas del Curso Virtual.

Criterios de evaluación

Entregar los programas VHDL y memorias asociadas a las prácticas propuestas de manera que se ejecuten correctamente y sin errores. Además las explicaciones dadas del trabajo realizado en las memorias asociadas deben ser adecuadas.

Ponderación de la PEC en la nota final 30

Fecha aproximada de entrega 20 Mayo

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? Si Descripción

UNED 8 CURSO 2019/20

Trabajo a Distancia

Estos ejercicios tienen como objetivos:

Complementación de los conocimientos adquiridos en la asignatura.

Aclaración y consolidación de los conocimientos adquiridos en el estudio aplicados al desarrollo de las prácticas

Comprobación del nivel de conocimientos

Características:

Ejercicios no obligatorios, de realización voluntaria

Es evaluable y constituye un 10% de la nota de la asignatura (junto con el informe tutorial) que se sumará a la nota final si la nota en la prueba presencial es igual o superior a 4 (en cualquier caso la nota máxima de la asignatura será un 10)

Se publicarán en el curso virtual propuestas de trabajos aunque se recomiendo que el alumno sea el que proponga la temática al Equipo Docente. Para ello deberá presentar un breve informe de una hoja indicando título, descripción y un estudio preliminar.

10

Criterios de evaluación

Ponderación en la nota final

Fecha aproximada de entrega 20 Mayo

Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

La nota final de la asignatura se compondrá, (una vez aprobada la misma con una nota superior al 5 en la Prueba Personal) de la siguiente manera:

30% Prácticas a Distancia (Obligatorio)

10% Trabajo a Distancia (Voluntario)

60% Prueba Personal Presencial (Obligatorio)

BIBLIOGRAFÍA BÁSICA

ISBN(13):

Título:DISPOSITIVOS LÓGICOS PROGRAMABLES. MATERIALES EN FORMATO DIGITAL.

Autor/es:Sergio Martin;

Editorial:U N E D

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9788469346525

Título:DISEÑO DE CIRCUITOS DIGITALES CON VHDL

Autor/es:Susana Borromeo ; Felipe Machado ; Editorial:UNIVERSIDAD REY JUAN CARLOS

ISBN(13):9788498494181

UNED 9 CURSO 2019/20

Título:DISEÑO DIGITAL CON ESQUEMÁTICOS Y FPGA (Colección Textos docentes) Autor/es:Machado Sánchez, Felipe ; Editorial:Editorial Dykinson, S.L.

RECURSOS DE APOYO Y WEBGRAFÍA

Dada la naturaleza práctica de la asignatura, el Equipo Docente pondrá a disposición de los alumnos un simulador para la realización de prácticas a distancia.

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 10 CURSO 2019/20